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In this paper an approximation method based upon spline functions is 
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In t roduc t ion  

I n  recent  years  s p e c t r a l  approximation methods f o r  e l l i p t i c  d i f f e r e n t i a l  

opera tors  have been ex tens ive ly  t rea ted  ( see  [121, [141 and [161 f o r  a survey 

of the  l i t e r a t u r e ) .  

I n  t h i s  paper s p e c t r a l  approximation r e s u l t s  are e s t ab l i shed  f o r  a l a r g e  

c l a s s  of l i n e a r  func t iona l  d i f f e r e n t i a l  equat ions (FDEs). The eigenvalue pro- 

blem f o r  FDEs i s  formulated a s  t he  eigenvalue problem of a l i n e a r  closed oper- 

a t o r  A i n  t h e  product space. We consider t h e  least squares-type approxima- 

t i o n  f o r  T = A’1 v i a  s p l i n e  approximation technique and the  genera l  r e s u l t s  

on s p e c t r a l  approximation f o r  compact ope ra to r  [ l l ,  1161 are then appl ied  i n  

our s i t u a t i o n .  

A more d i r e c t  and n a t u r a l  method would involve the  approximation of 

as i n  Banks and Kappel [4] ,  and as discussed below w e  have c a r r i e d  out  

computations based on such a scheme. However, our scheme performs much b e t t e r  

numerically.  Moreover we can e s t a b l i s h  convergence r e s u l t s  f o r  our scheme, 

whereas we have been unable t o  e s t a b l i s h  convergence of the  methods i n  the  

case of t h e  more d i r e c t  approximation of A. 

A 

The knowledge of the  spectrum plays  an important r o l e  i n  s tudying the  

s t a b i l i t y  and c o n t r o l l a b i l i t y ,  e tc . ,  of evolu t ion  systems 1131 and g ives  an 

approximation scheme f o r  such systems [51 . 
I n  the  l a s t  s e v e r a l  years  it has been widely recognized t h a t  t he  product  

space (Z = P? x L2) provides  an appropr ia te  state space f o r  t he  i n v e s t i g a t i o n  

of c e r t a i n  problems involving FDEs of the re ta rded  type as w e l l  as of t he  neu- 

t r a l  type 163, [91, [ l l ] .  These spaces have been used i n  the  context  of op t i -  

mal c o n t r o l  and es t imat ion  problems f o r  systems governed by FDEs (see 121, 

[91, [ l o ] ,  1131, f o r  a survey of l i t e r a t u r e ) ,  and approximation techniques of 

i d e n t i f i c a t i o n  and opt imal  con t ro l  f o r  re ta rded  systems, e.g., [21, [31, 

[41, 181- 



We f i r s t  summarize i n  Section 2 c e r t a i n  t h e o r e t i c a l  r e s u l t s  about FDEs i n  

order  t o  set up our e igenvalue approximation problem i n  x L2 and g ive  a 

complete d iscuss ion  of our ideas .  A gene ra l  approximation of t h e  r e so lven t  

of I n  Sec t ion  4 we s tudy  a r e a l i z a t i o n  of t h e  

gene ra l  scheme given i n  Sec t ion  3 by choosing spaces of s p l i n e  func t ions  as 

approximate subspaces. F i n a l l y  i n  Sec t ion  5, numerical r e s u l t s  f o r  cubic and 

q u i n t i c  s p l i n e  based  methods a r e  presented. For comparison, we a l s o  g ive  a 

r e s u l t  f o r  t h e  sp l ine  approximation of A 

A is developed i n  Section 3. 

which is d iscussed  i n  [41.  

Throughout t he  paper,  t h e  dimension n and t h e  de lay  r E (0,m) are 

assumed t o  be  fixed and t h e  fol lowing n o t a t i o n  w i l l  be used. The H i l b e r t  

space of p-va lued ,  square i n t e g r a b l e  func t ions  on t h e  i n t e r v a l  [-r,Ol is 

denoted by L2. Ck denotes the  space of p -va lued  cont inous func t ions  which 

possess  k continuous d e r i v a t i v e s  on [-r,O]. For k = 0 t h i s  is  usua l  

space of continuous func t ions  which i s  denoted simply by C. W; is t h e  

Sobolev space,  the space of p -va lued  func t ions  f on [-r,Ol wi th  

a b s o l u t e l y  continuous and f 

E? X L2. Given an element Q E Z ,  Qo E I? and Q E L2 denote t h e  two 

coord ina tes  of +,Q = ( 4  ,@ ). The symbol <e* ,*>>  s t a n d s  f o r  n a t u r a l  i n n e r  

product i n  Z. All o t h e r  i nne r  products  are denoted by < * , e >  when t h e  un- 

de r ly ing  space can be understood from t h e  contex t .  I * I  denotes  t h e  norm of 

elements of a Banach space and of ope ra to r s  between Banach spaces and 1.1 

f (k-1) 

E L2. W e  denote by Z t h e  product space (k) 

1 

0 1  

denotes t h e  Euclidean norm i n  If'. For a l i n e a r  ope ra to r  A we use t h e  s tan-  

dard no ta t ion :  D ( A ) ,  R ( A ) ,  k ( A ) ,  f o r  t h e  domain, range and n u l l  space of A ,  

r e s p e c t i v e l y ,  and p ( A )  and a(A) denote  t h e  r e s o l v e n t  set and spectrum 

of A ,  respec t ive ly .  Given a measurable func t ion  x : [-r,Ol + and 

t 0, t h e  func t ion  xt : [-r, 01 + is  def ined  by 

x t (0)  = x( t+0) ,  9 E [-r,Ol. 

-2- 



2. The Linear  Funct ional  D i f f e r e n t i a l  Equation 

I n  t h i s  s e c t i o n  we s ta te  the type of equat ion  we  cons ider  and the r e s u l t s  

f o r  t h i s  equat ion  which are important f o r  t he  d i scuss ions  t o  follow. 

Given (TI,@) E Z we consider the f u n c t i o n a l  i n t e g r a l  equat ion i n  

t 
(2.1) = TI + 1 Lxsds 

Dxt 0 

where D and L are l i n e a r  *-valued ope ra to r s  wl th  domains D (D) and 

D(L)  both subspaces of L2. Assume t h a t  D and L are given by 

and 

i where -r = 8 < * * *  < eo = 0 and Ai, A ( e )  are n x n mat r ices ,  t h e  ele- 

ment of 8 + A ( e )  being i n t e g r a b l e  on [-r,Ol f o r  i = 1,2. 

m 
i 

For (r),4) E 2 t h e r e  e x i s t s  a unique s o l u t i o n  x t o  (2.1) i n  

L2([-r ,z],*) f o r  each T > 0 such t h a t  (Dxt,xt) E Z for  each t E [O,T] 

and depends cont inuously on the  i n i t i a l  d a t a  (r),6) (e.g. see [61, [91). 

Define f o r  t > 0, S ( t )  : 2 + 2 by S( t ) ( r ) ,@)  = (Dxt,xt) where x is t h e  

s o l u t i o n  t o  (2-1) .  Then { S ( t ) , t  > 0) forms a s t r o n g l y  continuous semigroup 

i n  Z. Using r a t h e r  s tandard  arguments (e.g., [61, [91, and [181) one can 

then  show: 

-3- 



Theorem 2.1 

(i) If A denotes the infinitesimal generator of S(t), t 2 0, then 

(ii) The spectrum of A is all point spectrum and h E a ( A )  if 

det A ( X )  = 0 where 

(2.6) A ( X )  = m(eh*) + L(eh*). 

For each h E: p(A), the resolvent of A is compact and is given by 

(hI-A>-lz = @+,+) for z = (TI,@) E Z 9 

with 

where 

(iii) If h E a(A) is a zero of det A(h) of multiplicity m, then 

Z = N ( h I  - A)m + R(hI - R)m and both N(A1 - A)m and R(hI - AIm are 

-4- 



i n v a r i a n t  with respec t  t o  S ( t ) ,  t 0. Moreover N ( X I  - A)m has dimension 

j 
m 

m and i t s  element i s  represented i n  t h e  form (DI$,@) with  4 = ( 1 a 4 e  )e , 

Remark 2 . 2  I f  

continuous i n  

( 2 . 1 ) :  

J j -1  

( t l , b )  E D ( A )  then the  s o l u t i o n  x t o  ( 2 . 1 )  is  abso lu te ly  

[-r, 71 and s a t i s f i e s  t h e  d i f f e r e n t i a l  ve r s ion  of equat ion 

= Lx d 
dt DXt t xo = @ 

f o r  almost a l l  t. 

Remark 2.3 L e t  us introduce an equivalent  norm i n  Z such t h a t  Z wi th  t h i s  

n o m  is  aga in  a Hi lbe r t  space,  i.e., de f ine  the  weight ing func t ion  g t o  be  

s t e p  func t ion  on [-r,Ol such t h a t  

t he  completion of Z with r e spec t  t o  inne r  product  
zg 

and le t  us denote by 

0 

Then f o r  r e t a rded  systems ( i .e . ,  D4 = +(O)  i n  (2.211, i t  is shown i n  [41 

t h a t  A - f31 i s  d i s s i p a t i v e  i n  Zg f o r  some p o s i t i v e  cons tan t  @. Obvious- 

l y ,  t h e  norm II*II is equiva len t  t o  II*II Therefore ,  a l l  r e s u l t s  s t a t e d  i n  Z Z *  
g - 

g' Theorem 2.1 remain v a l i d  i n  Z 

-5- 



3 .  An Approximation of t he  Resolvent 

Without loss of gene ra l i t y  we assume t h a t  T = e x i s t s ,  i.e., 

0 E p(A)  s ince  adding a cons tan t  c only s h i f t s  t h e  eigenvalues  of 

i s  e a s i l y  shown t h a t  h E a @ )  i f  p = l / h  t a(T) and moreover, t he  

p a l  vec to r s  of A assoc ia t ed  with h are the  same as t h e  p r i n c i p a l  

of T assoc ia ted  with p. Unc e r  t h i s  assumption t h e r e  e x i s t s  a p o s i t  

s t a n t  w such t h a t  

A .  It 

p r inc i -  

v e c t o r s  

ve  con- 

f o r  a l l  z E D ( A ) .  2 (3.1) <<Az,Az>> > wI Iz I I  

Indeed, f o r  any element z E D ( A )  t h e r e  ex is t s  a unique J, E: Z such t h a t  

z = and the re fo re  

2 
<<Az,Az>> = <<+,+>> = 11+11 . 

However, t h e r e  e x i s t s  a p o s i t i v e  cons tan t  a such t h a t  

2 2 s o  i t  fo l lows  tha t  <<Az,Az>> > ( l / a  ) Ilz I . 
Consider the fol lowing approximation of T: i f  {Z,} is a sequence of 

subspaces of Z, then f i n d  a minimizing element i n  ZN of 

( 3 . 3 )  IIA 2 - f II f o r  each f E Z. 

Then such an element zN must s a t i s f y  

-6- 
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N ( 3 . 4 )  - f ,  A+>> = O f o r  a l l  $ E Z . 

Hence from (3.1) i t  follows t h a t  the minimization problem ( 3 . 3 )  has  a unique 

s o l u t i o n  zN s a t i s f y i n g  ( 3 . 4 ) .  L e t  us de f ine  a l i n e a r  ope ra to r  TN i n  Z 

by 

for f E Z ( 3 . 5 )  T N f = z  N 

where zN is  t h e  unique s o l u t i o n  of ( 3 . 4 )  . 

Lemma 3.1 

Suppose the  following conditions are s a t i f i e d .  

(a )  zN c D I A )  

(b) There exists a sequence {JI ,}  such t h a t  4, = (D&N,4N) E ZN, 

l i m  L @N = L@ i n  * and l i m  $N = 6 i n  L2  f o r  a l l  I$ E Ck, k > 2. 

Then 

N (i) T + T s t rong ly  i n  Z. 

( i i )  {TN} i s  c o l l e c t i v e l y  compact, i.e., t h e  set {TNf : Ilfll e 1, N = 

1,2, . . } is  s e q u e n t i a l l y  compact . 

Proof: 

0 1  (i) L e t  f = (f , f  ) E Z. Since Ck-' is  dense i n  L2 for any 

E > 0 t h e r e  e x i s t s  a i1 E Ckol such t h a t  Ilf' - i l l1 E. L e t  us  d e f i n e  

fA = (f 0 ,f -1 ) E Z and 6 = A'l = (DG,;). It follows from (2.7) and (2.8) 

t h a t  $ E Ck. It then follows from t h e  condi t ion  (b) t h e r e  e x i s t s  an NO 

-7- 



and a sequence (+,I such t h a t  i f  N 2 NO then 
A - +)It2 < E.  

Note t h a t  

IIA(TNf - T f )  It < It A(GN - j) + - f 11 < 2 ~ .  

N 2 E  Hence from (3.1) w e  have IIT f - TfII < - 
0 

(ii) For any f E 2 

llATNf II c II (ATNf - f )  + f I1 c llATNf - f I1 + II f 11 . 

By the  d e f i n i t i o n  of TN 

G t i f i t  + n f i t  = 211fit. 

Hence {ATNf : IlfII G 1 N = 1,2, ..., 1 is a bounded s e t  i n  Z. Therefore  ( i i )  

fol lows from the compactness of A' l .  ( Q o  Eo D o )  

L e t  p be a f ixed  nonzero eigenvalue of T wi th  a l g e b r a i c  

m u l t i p l i c i t y  m and suppose that r i s  c i rc le  centered a t  p which l ies i n  

p(T) and which encloses no o the r  p o i n t s  of a(T).  Then the ope ra to r  

E = -  ' ,f (21 - T)-'dz 
2x1 

is  a p r o j e c t i o n  operator  onto The fol lowing r e s u l t s  f o r  

t he  case of s t rong convergence of c o l l e c t i v e l y  compact ope ra to r s  can be found 

R (E) - N ( ( ~ I - T ) ~ ) .  

-8- 



i n  Anselone [ l l  For N s u f f i c i e n t l y  l a r g e  r C p(TN) and the  s p e c t r a l  

p r o j e c t i o n  

( 3 . 7 )  EN = - ' (zI-TN)-ldz 
2n i  

N e x i s t s ;  EN converges s t rong ly  to  E and (E 1 is  c o l l e c t i v e l y  compact; and 

dim R(EN) = dim R(E) = m. Thus, counting according t o  a lgeb ra i c  m u l t i p l i c i -  

t ies ,  t h e r e  are m e igenvalues  of TN i n  r which we  denote p1(N),.-.,pm(N). 

For each j ,  l i m  pj(N) = p as N + a. 

Moreover, t he  genera l  r e s u l t s  of c o l l e c t i v e l y  compact convergence of a 

family of compact opera tors  i n  Osborn 1161 provide the  fol lowing estimates f o r  

t h e  convergence. Given two closed subspaces P and Q of Z we de f ine  

Note t h a t  6(P,Q) = 6(Q,P) since Z is  a H i l b e r t  space. 

Theorem 3.2 

( i ) .  There e x i s t s  a constant  C 1  such t h a t  

f o r  a l l  s u f f i c i e n t l y  l a r g e  N, where (T - T ~ ) I R ( E )  denotes the  r e s t r i c t i o n  

of T - TN t o  R ( E ) .  

( i f ) .  Define the  a r i t hme t i c  mean of I p j ( N ) )  : 

-9- 



Then the re  e x i s t s  a cons tan t  C 2  such t h a t  

(iii). Let  a be the  ascent  of pI - T. Then t h e r e  e x i s t s  a cons tan t  

Cg such t h a t  

( i v ) .  L e t  p(N) be an eigenvalue of TN and wN a u n i t  vec to r  i n  

??(EN) s a t i s f y i n g  (p(N)  - TN)k wN = 0 f o r  some p o s i t i v e  i n t e g e r  k C a. 

Then f o r  any integer  R with k < R G a, t h e r e  e x i s t s  a v e c t o r  uN E R ( E )  

such t h a t  (@I - T) u i+ 0 and R N  

(1-k+l ) / a  II lluN - w N II G C4 ll(T - TN) 

4 .  Spl ine  Approximation 

I n  t h i s  sec t ion  we choose the  ZN i n  Sec t ion  3 as a c e r t a i n  subspace of 

s p l i n e  func t ions  and we d i scuss  t h e  rate of convergence of t h e  approximation 

scheme . 
N 

L e t  ( e j ) ,  j = l , . . . , N  + 2k + 1 be t h e  scalar (2k - 1 ) t h  order  s p l i n e  

N func t ion  on [-r,Ol corresponding t o  the  p a r t i t i o n  t = - j ( r / N ) ,  

j = 0 ,..., N of [-r,01 and Z2k-l 

elements of the form (D$,$) E Z with  

j 

be t h e  l i n e a r  subspace of Z spanned by N 

N 4 = (O,...,O,e ,0,...,0). 
j 

-10- 



Lemma 4.1  

1 s a t i s f i e s  the  condi t ions of Lemma 3.1 f o r  k > 1 and t h e r e  “2k-1 

ex is t s  a cons tan t  C5 depending upon E such t h a t  

N Proof: 

t i n g  (2k-1)th order  s p l i n e  func t ion  def ined  by 

L e t  z = (DQ,Q)  E D ( A )  with 6 E C2k and 6, denote  t h e  in t e rpo la -  

and 

j = O,... ,N 

i =  , ,k-1 

Using the  well-known convergence p r o p e r t i e s  of i n t e r p o l a t i n g  s p l i n e ,  

e-g. ,  117, p a  31 

(4.3)  
1 2k-1 n i f :  - in c M 2k 

w2 

f o r  some p o s i t i v e  cons tan t  M. 

For 8 E [-r,Ol w e  have 

-11- 



and hence 

Note that L is a continuous functional C -+ $. Thus, the condition (b) of 

Lemma 3.1 is satisfied and moreover, we have 

where 

( 4 . 4 )  

and 

I i=o -K 

we have 

From (iii) 

N 1 II(T-T )f I1 < - II A(T - TN)f I1 w 

L 

f Th rem 2.1 it follows that l l f  1 II 2k-1 < y t d n  f o r  some 
L2 

w2 

-12- 



positive constant y depending upon f 1 . Therefore (4.1) follows from the 

finiteness of 

From the 

eigenvalues is 

According 

dim HE). (Q. E. D.) 

estimate (4.1) and Theorem 3.2 the rate of convergence for 

at least o((E) 1 2k-1 ). 

has the following coordinate N to the equation (3.41, T 1 
VN 
2k-1 L 

representation. Let BN be given by 

(4.5) 

when @ denotes the Kronecker product and I is the n x n identity matrix 

and 

(4.6) N N  iN = (DB ,@ 1 

Define % x matrices 

(4.7) 

and 

- ( 4 . 8 )  

Then 

(4.9) 

^N ^N = <<A$ ,AP >>, R2k-l 

N̂ ^N = <<@ ,A@ >>. ‘2k-1 

where a is kN dimensional column vector. , 

is invertible and N Note that from (3.1) it is easy to show that R2k-l 
N that a(T ) is equal to the set of eigenvalues of the matrix: 

-1 3- 



(4.10) 

5 .  Numerical Results and Remarks 

In this section we present some numerical results to illustrate the 

approximation methods described in Section 3 and 4 and discuss other possible 

approximation methods. 

and the eigenvalues of 

were computed using standard algorithms such as Gaussian 

N The matrices (4.7), ( 4 . 8 ) ,  the inverse of R2k-l 

the matrix X2k-1 

quadrature, Gauss elimination and the QR-method 171 

In order to analyze the accuracy of approximation we need the approximate 

reference eigenvalues. To this end the approximate eigenvalues obtained by 

our methods were put into an IMSL package, which computes the roots of an ana- 

lytic complex function using Muller's method with deflation, as initial 

denotes the eigenvalues obtained by N 
hXACT guesses. In the tables below, 

the following steps. 

Step 1: Compute the approximate eigenvalues by using a quintic spline 

based method with N appropriately chosen for each example. 

Step 2: Compute the roots of the characteristic equation by using 

Muller's method in which the eigenvalues obtained in Step 1 

are used as initial guesses. A root is  accepted if two suc- 

cessive approximations to it agree in the first seven digits. 



Example 1 

For the  f i r s t  example we consider t he  f i r s t  order  equation: 

a t )  = x ( t )  + x(t-1). 

For t h i s  example 

1 -1 p = ?; E O(T) i f  A(h) = A - 1 - e = 0 

and the  ca l cu la t ions  were ca r r i ed  ou t  f o r  cubic  and q u i n t i c  s p l i n e  methods. 

I n  the  t a b l e s  below A I  and AN denote the  computed eigenvalues  based on cu- 

b i c  and q u i n t i c  s p l i n e s  respec t ive ly .  

and 1A(A;)l2 r e spec t ive ly .  The results c l e a r l y  show t h a t  t h e  convergence of 

h i s  much f a s t e r  than the  convergence of . For both methods the  rate of 

convergence is b e t t e r  than w e  expected i n  Sec t ion  4 and the  eigenvalues  wi th  

small modulus are obtained almost exact ly  r ega rd le s s  of N. 

9 
N 2  SN and SN are the  e r r o r s  l A ( A c ) l  

C q 

9 AC 

-15- 



TABLE I 

C 
A16 

C 
68 

C 
NO A8 

C 

1 1 278465 3 x 1.278465 5 x 

2 -1.588318 f 4.155300 i 5 x 10-l' -1.588317 f 4.155305 i 1 x 

3 -2.422831 f 10.68360 i 4 x -2.417678 f 10.68602 i 3 x lo" 

4 -3.247468 f 17.03489 i 7 x lo1 -2.863190 f 17.05637 i 9 X 

5 -3.190732 f 23.39339 i 3 x 10-1 

6 -3.599035 f 29.79009 i 5 x lo1 

94 
'32 632 C 'EXACT NO 

C 

1 278465 

-10588317 f 4.155305 i 

-2.417631 f 10.68603 i 

-2.861518 f 17.05612 i 

-3.167905 f 23.38566 i 

-3.402828 f 29.69862 i 

-3.595517 f 36000485 i 

-3.765356 f 42.31378 i 

1.278465 

-1.588317 f 4.155305 i 

-2.417631 f 10.68603 i 

-2.861502 f 17.05611 i 

-3.167754 f 23.38558 i 

-3.401945 f 29.69798 i 

-3.591627 f 36.00146 i 

-3.751047 f 42029965 i 

9 3.934929 * 48.64474 i -3.888543 f 48.59442 i 



TABLE I1 

1 1.278465 4 x 1.278465 7 x 

2 -1.588317 f 4.155305 i 3 x -1.588317 f 4.155305 i 3 x 

3 -2.417631 f 10.68600 i 1 x -2.417631 f 10.68603 i 1 x 

4 -2.877073 f 17.03424 i 2 x lo-' -2.861504 f 17.05611 i 2 X lo-' 

5 -3.167935 f 23.38550 i 2 x 

6 -3.408216 f 29.69662 i 3 x lom2 

7 -3.726049 f 35.99129 i 3 x lo1 

94 
NO h32 632 'EXACT 

1 1.278465 4 x 1.278465 

2 -1.588317 f 4.155305 i 8 x -1.588317 f 4.155305 i 

3 -2.417631 f 10.68603 i 1 x -2.417631 f 10.68603 i 

4 -2.861502 f 17.05611 i 4 x 10-l6 -2.861502 f 17.05611 i 

5 -3.167754 f 23.38558 i 1 x 10-l2 -3.167754 f 23.38558 i 

6 -3.401946 f 29.69798 i 7 x 10-l0 -3.401945 f 29.69798 i 

7 -3.591638 f 36.00146 i 2 x -3.591627 f 36.00146 i 

8 -3.751138 f 42.29968 i 2 x -3.751047 f 42.29965 i 

9 -3.889167 f 48.59469 i 1 low3 -3.888543 f 48.59442 i 

10 -4.013041 f 54.88863 i 5 x -4.009422 f 54.88686 i 

11 -4.135839 f 61.18780 i 2 x loo -4.117267 f 61.17761 i 

12 -4.301116 f 67.51884 i 5 x lo1 -4.214618 f 67.46710 i 
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According to the calculations in Step 1 with N = 94, fifty-three "good" 

approximations, which agree at least in the first three digits of the real 

part and four digits of the imaginary part with the reference eigenvalues 

were obtained. In addition to these eigenvalues, twenty-two more 9 4  
'EXACT 
eigenvalues were obtained through Step 2. 

Example 2 

For the next example we consider the first order neutral system 

1 .  a t )  - 7 x(t - 1) = x(t) + x(t-1) 

- (1 + e-'). The with the characteristic equation det A(x) = h(1 - 
numerical results for this example were carried out using quintic spline ap- 

proximation with N = 94 and can be found in Table 111. We can observe the 

1 -A 

neutral chain ( h  E C Ih = - log2 + i2kx, k E N). Although we have not 

listed all of the computed eigenvalues, a total of eighty "good" approxima- 

tions were obtained via Step 1 and then Step 2 with N = 94. 
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TABLE 111 

94 
'EXACT NO ig4 tig4 6 94 

1 

2 

3 

4 

5 

6 

7 
0 
0 
0 

19 

20 

21 

22 

23 

24 

25 

2 6  

27 

28 

29 

30 

31 

1.414842 

-2 553 133 

-0.7108952 f 5.775593 i 

-0.6969801 f 12.32420 i 

-0.6948095 f 18.68940 i 

-0.6940744 f 25.01295 i 

-0.6937383 f 31.32022 i 

-0.6932011 f 106.7861 i 

-0.6931989 f 113o0709 i 

-0.6932007 f 119.3555 i 

-0.6932091 f 125-6402 

-006932286 f 131.9248 

-0.6932678 f 138.2096 

-0.6933413 f 144.4949 

-006934740 f 150.7810 

-0.6937085 f 157.0687 

-0.6941158 f 163-3592 

-006948143 f 169.6545 

-0.6959983 f 175.9581 

-006979865 f 18202758 

i 

i 

i 

i 

i 

i 

i 

i 

i 

i 

lo414842 

-2 553 133 

-0.7108952 f50775593 i 

-0.6969801 f12.32420 i 

-0.6948095 f18.68940 i 

-0.6940744 f25.01295 i 

-0.6937383 f31.32022 i 

-006931980 f 106.7861 i 

-0.6931925 f 113o0708 i 

-0.6931879 f 119.3554 i 

-0.6931839 f 125-6398 i 

-0o6931801 f 131-9242 i 

-0.6931775 f 138.2084 i 

-0.6931749 f 144.4925 i 

-0.6931725 f 150.7766 i 

-0.6931707 f 15700605 i 

-0.6931689 ;t 16303445 i 

-006931673 f 169.6283 i 

-006931659 f 175.9121 i 

-006931646 f 182.1959 i 
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Example 3 

Here w e  consider the equat ion for an o s c i l l a t o r  with delayed damping 

X ( t )  + at - 1) + x ( t )  = 0. 

Rewriting t h e  above equat ion as a f i r s t  order  system w e  have 

where x l ( t )  = x ( t )  and x,( t )  = G ( t ) .  For t h i s  example t h e  c h a r a c t e r i s t i c  

equat ion  is  given by and t h e  c a l c u l a t i o n s  w e r e  c a r r i e d  out  

us ing  a q u i n t i c  s p l i n e  approximation with N = 45 which provided forty-one 

a c c u r a t e  approximation for t h e  eigenvalues  through t h e  two-step procedure 

o u t l i n e d  above. Note t h a t  t h i s  system has two uns t ab le  e igenvalues  "0.0219316 

f 1.601953 i." But t h e  system: x ( t )  + ; ( t )  + x ( t )  = 0 is  s t a b l e .  

A2 + he'' + 1 = 0 
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TABLE IV 

45 
NO A45 6 45 A~~~~ 

1 -0.7384324 

2 0.0219316 f 1.601953 i 

3 -2.046879 f 7.582028 i 

4 -2.648399 f 13.94769 i 

5 -3.017915 f 20.27187 i 

6 -3.286399 f 26.58018 i 

7 -3.497613 f 32.88056 i 

8 -3.671812 f 39.17634 i 

9 -3.820082 f 45.46920 i 

1 0  -3.949172 f 51.76008 i 

11 -4.063528 f 58.04959 i 

12 -4.166328 f 64.33820 i 

-0.7384324 

0.0219316 f 

-2.046879 f 

-2.648399 f 

-3.017915 f 

-3.286399 f 

-3.497613 f 

-3.671811 f 

-3.820078 f 

-3.949154 f 

-4.063448 f 

-4.166003 f 

1.601953 i 

7.582028 i 

13.94769 i 

20.27187 i 

26.58018 i 

32.88056 i 

39.17634 i 

45.46920 i 

51.76007 i 

58.04954 i 

64.33796 i ’ 

13 -4.260209 f 70.62655 i -4.259009 f 70.62558 i 

14 -4.348215 f 76.91612 i 1 x l o3  -4.344095 f 76.91258 i 

-4.422504 f 83.19998 i 4 1 5  -4.435822 f 83.21115 i 2 x 1 0  

.16 -4.536140 f 89.52395 i 2 x lo5  -4.495209 f 89.48519 i 

Remark 5.1 

The approximate methods developed i n  Banks-Rappel 141 provide a method t o  

approximate the  eigenvalues of FDEs of re ta rded  type. L e t  {PN} be t h e  se- 

quence of orthogonal p ro jec t ions  PN : Zg + Z2k-l f o r  a f ixed  k (see Remark 

2.4 f o r  t h e  d e f i n i t i o n  of Z ) and A N  = PNAPN. Then it  is  known t h a t  f o r  h 
g 
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s u f f i c i e n t l y  la rge  (XI - AN)-' converges s t r o n g l y  t o  (XI  - A)-'. From 

t h i s ,  when combined with the  f a c t  t h a t  (AI - A)-' is  compact, one can a rgue  

t h e  convergence r e s u l t s  as i n  Theorem 3.2. The au thor  has  t r i e d  r epea ted ly  

bu t  unsuccessful ly  t o  prove t h a t  (('1 - A 1- 1 i s  c o l l e c t i v e l y  compact. The 

fol lowing numerical r e s u l t s  suggest t h a t  t h e  convergence r e s u l t s  are t rue .  

The ca l cu la t ions  were c a r r i e d  out f o r  Example 1 by us ing  a q u i n t i c  s p l i n e  ap- 

proximation with N = 32. Although we have not  l i s t e d  t h e  r e s u l t s  of t h i s  

scheme f o r  other  examples, w e  no te  t h a t  t h e  convergence of t h i s  scheme i s  much 

32 are %-K slower than tha t  f o r  our scheme. For in s t ance ,  t h e  equat ion e r r o r s  

much b igger  than 68 and 616 i n  Table I1 f o r  t h e  eigenvalues  wi th  small mo- 

dulus  i n  t h i s  ca l cu la t ions  

N 1  

q 9 

TABLE V 

32 32 94 
NO 'B-K %-K 'EXACT 

1 1.278464 

2 -1.588319 f 4.155304 i 

3 -2.417643 f 10.68603 i 

4 -2.861526 f 17.05611 i 

5 -3.167977 f 23.38543 i 

6 -3.403925 f 29.69778 i 

7 -3.600767 * 36.00608 i 

8 -3.772276 f 42.33761 i 

8 x 

1 x 10-l0 

2 x 

1 

4 

4 

1 x 10-1 

4 x l o o  

1 . 278465 

-1 -588317 f4.155305 i 

-2.417631 k10.68603 i 

-2.861502 f17.05611 i 

-3.167754 f23.38558 i 

-3.401945 k29.69798 i 

-3.591627 j36.00146 

-3.751047 f42.29965 i 

9 -3.861764 k 48.75268 i -3.888543 f48.59442 i 
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Remark 5.2 

From the  numerical r e s u l t s  above our method appears t o  y i e l d  good approx- 

imations f o r  t he  eigenvalues associated with FDEs. Even f o r  small N(e.g. 

N = 8) i t  y i e l d s  good approximations t o  e igenvalues  with s m a l l  modulus. And 

i t  provides  good i n i t i a l  guesses f o r  a subrout ine  t o  compute t h e  roo t s  of t h e  

c h a r a c t e r i s t i c  equation. I n  the  case when n,  t he  dimension of t he  system 

(2.1) is  l a r g e  w e  have t o  so lve  the eigenvalue problem f o r  l a r g e  order  

matr ix .  For such a case i t  seems b e t t e r  t o  choose t h e  h igher  order  s p l i n e  

elements f o r  t he  approximation r a the r  than inc reas ing  N. Note t h a t  Theorem 

3.2 remains v a l i d  i n  Zg f o r  any weighting func t ion  g. For the  case when 

(2.1) has  more than one po in t  delay the choice of g as i n  (2.10) would pro- 

v ide  good approximation methods. 

For the  case when (2.1) only has s i n g l e  poin t  delay,  t he  implementation 

of t h e  algori thms f o r  our scheme is  almost as easy f o r  t h e  scheme descr ibed i n  

Remark 5.1. is  more For general  ease the  inversion of t h e  matrix Rpk-l N 

complicated,  so we would use  the QZ-method [151 t o  f i n d  eigenvalues  of 

2k-la* gene ra l i zed  eigenvalue problem: ~ L R ; ~ - ~  a = H 
N 

' L e t  us d iscuss  o the r  poss ib l e  approximation methods. 

Remark 5.3 

L e t  us  consider  a sequence of approximations t o  T def ined by PN T PN 
N where (P 1 is t h e  sequence of orthogonal p r o j e c t i o n s  def ined i n  Remark 

5.1. Then i t  is  easy t o  show t h a t  PN T $J converges i n  norm t o  T which 

impl ies  (P T P 1 is  c o l l e c t i v e l y  compact. Thus Theorem 3.2 a p p l i e s  t o  t h i s  N N  

type  of approximation. 
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Remark 5.4 

From Theorem 2 .1  i t  follows that 

and 

And i t  i s  equivalent to  the following generalized boundary value problem: 

Note that A2 E o ( x )  i f  A e a(A). Thus we may extend the methods in  [123, 

1141 for  e l l i p t i c  boundary value problem to  such a problem. 
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